Cormorants and fish populations DOCUMENTATION OF EFFECTS

Niels Jepsen DTU Aqua, Silkeborg

Main points:

1. Short overview of the development of the cormorant conflict
2. Predation studies, coast, lakes, rivers - what have we learned?
3. Briefly on Danish cormorant management plan

Documenting the impact of predation:

- Proving things that have happened
- Lack of fish to study
- High variation from year to year
- Effect of capture, handling and tagging
- Statistical confidence in estimates

Funding for studies ??

Colonies 2016

Current max number of birds: 250.000

Current min number of birds: 15.000

Development in breeding stock (pairs) in Denmark 1975-2018

Who has the problems?

- Pound-net fishers
- Recreational net fishers
- Anglers
- Biodiversity?

Coast:

Eelpout and cod largely disappeared

Documented impact on flounders

Documented impact on eel

Documented impact on salmon

Ringkøbing Fjord

10,000 eel were cw-tagged and released in 2003 and 64.000 CW tagged 1-year salmon were released in Skjern River

4,000 flounders (7-20 cm) were caught and cw-tagged in 2004

Predation of salmon smolts 2003

Recovery of cw tags from salmon smolts from cormorant pellets collected April through June 2003

Results from Ringkøbing Fjord 2000-2004

Telemetry (2000, 2002): Salmon smolts, $40-50 \%$ of tags were recovered from one colony.

CW-tagging (2003, 2004): 25% of tagged salmon smolts were eaten during the 3 -weeks smolt migration period. $40-50 \%$ of tagged eel were eaten in one year. All (100%) of tagged flounders eaten in 15 days

Pellet analyses: 30,000 salmon smolts, 1.4 million flounders, 38,000 eel were eaten.

Smolt predation by cormorants from Jepsen et al. (in press)

Year	Number tagged	Species	Mortality by cormorants (\%)	Method	Source
1997	50	Wild trout	55	Radio-telemetry	Dieprink et al. 2001
1997	50	Hatchery trout	67	Radio-telemetry	Dieprink et al. 2001
2000	17	Wild trout	24	Radio-telemetry	Dieprink et al. 2002
2000	51	Wild salmon	48	Radio-telemetry	Dieprink et al. 2002
2002	51	Salmon (mix)	40	Radio-telemetry	Baktoft 2003
2001					
2003	64,500	Hatchery salmon	23	CW-tagging	Jepsen et al 2010
2003	-	Salmon (mix)	> $60 *$	Pellet analyses	Sonnesen 2007
2005	10,000	Hatchery salmon	31	CW-tagging	Jepsen et al 2010
2005	58	Salmon (mix)	53**	Acoustic telemetry	Koed 2006
2005	42	Trout (mix)	88**	Acoustic telemetry	Koed 2006
2008	4363	Wild trout	45***	PIT-tagging	Jepsen et al. 2014
2008	5009	Wild trout	42***	PIT-tagging	Jepsen et al. 2014
2010	5900	Hatchery trout	$72 * * *$	PIT-tagging	Thomsen 2013
2014	1400	Wild trout	$22 * * *$	PIT-tagging	Jepsen et al. 2014
2016	74	Salmon (mix)	42	Radio-telemetry	Unpublished
Mean			47		

47% fewer smolts $=47 \%$ fewer salmon coming back!

Not many salmon survive to this size!

Consumption of fish from the Baltic Sea $-\mathrm{kg} / \mathrm{km}^{2} /$ year

From Hansson et al. 2017

Cormorants in rivers - a new phenomenon in DK

Two cold winters 2009-10 2010-11

Foto: Michael Holm

Grayling

$\left.\begin{array}{|c|c|c|}\hline \text { Grayling - Omme } \AA & 2009 & 2010 \\ \hline \text { Number pr. km }\end{array}\right]$

Catch of Grayling by electrofishing a 2 km stretch in 2009 og 2010 (Iversen 2010).

Grayling

Grayling density in 1,5 km stream.

25 grayling (32-36 cm) were radiotagged in October.

River with very few cormorants

Only two tagged grayling survived

A loss of 80% of total fish biomass was estimated

Jepsen et al. 2018

Video-clip

Trout

Year	PIT-tagged (N)	Recovered (\%)
2010	650	8.5
2011	1038	12.2
2012	937	14.6

PIT-tags from brown trout, recovered at a cormorant roosting site. Jepsen et al. 2018

Predation on lake fish?

PIT studies of lake fish

More than 1000 PIT tags were found in one colony 13-20 km away

Loldrup Lake				Viborg Lakes		
	2005	2007	2008	2009	2008	2009
Roach	19%	32%		17%	30%	24%
Bream	11%				33%	33%
Perch	$\mathbf{4 1 \%}$			$\mathbf{4 6 \%}$	$\mathbf{7 0 \%}$	$\mathbf{4 5 \%}$
Pike			$\mathbf{3 3 \%}$	$\mathbf{3 0 \%}$		

Minimum estimates (Skov et al. 2014)

Perch

Larger perch are more vulnerable

Conclusion:

Impact on fish populations in Rivers, Lakes and coast.
Documentation (by different methods) that predation from cormorants is now the main regulating factor for many fish stocks.

Effects include:

- Economic loss (commercial and recreational fishing)
- Cultural loss
- Biodiversity loss
- Problems in reaching WFD requirements

Management

Ministry of Environment

Cormorant-group: Stakeholders, managers, experts

National cormorant management-plan since 1997:
-Egg oiling
-Prevention of new settlements
-Protective Shooting (fishers and hunters)
-Regulation outside breeding season in rivers

Adaptive management

- MP provides the framework
- Loss in poundnets - fishermen were permitted to shoot cormorants at nets (1000 m)
- Loss of smolts - anglers were permitted to shoot cormorants during smolt migration
- Cormorants foraging in the rivers - protective shooting was initiated
- Continued problems in rivers - permission to shoot at night roosting sites

Permissions granted to regulate (shoot) in rivers

Oiling off

eggs

17 years after start, we have app. 2000 nests in 2018

- Despite much effort - conflicts still remain high
- No clear effects of regulation
- High immigration rate
- A common EU plan would help management

Thank you

- Dieperink, C., Pedersen, S. \& Pedersen, M.I. (2001). Estuarine predation on radiotagged wild and domesticated sea trout (Salmo trutta L.) smolts. Ecology of Freshwater Fish 10, 177-183.
- Dieperink, C., Bak, B.D., Pedersen, L., Pedersen, S. \& Pedersen, M.I. (2002). Predation on Atlantic salmon and sea trout during their first days as postsmolts. Journal of Fish Biology 61, 848-852.
- Koed, A., Baktoft, H. \& Bak, B. D. (2006). Causes of mortality of Atlantic salmon (Salmo salar) and sea trout (Salmo trutta) smolts in a restored river and its estuary. River Research and Applications 22, 69-78.
- Jepsen, N, Sonnesen, P., Klenke, R. \& Bregnballe, T. (2010). The use of coded wire tags to estimate cormorant predation on fish stocks in an estuary. Marine and freshwater Biology 61, 320329.
- Skov, C., Jepsen, N., Baktoft, H., Jansen, T., Pedersen, S. \& Koed, A. (2014). Cormorant predation on PIT-tagged lake fish. Journal of Limnology.
- Jepsen, N, Ravn, H.D. \& Pedersen, S. (2018). Change of foraging behavior of cormorants and the effect on river fish. Hydrobiologia, 820, 189-199.
- Jepsen, N,. Flavio, H. \& Koed, A. (in press). The impact of Cormorant predation on Atlantic salmon and Sea trout smolt survival. Fisheries management and ecology.

Human - Wildlife Conflicts in Europe

Fisheries and Fish-eating Vertebrates as a Model Case Series: Environmental Science and Engineering Klenke, R.A.; Ring, I.; Kranz, A.; Jepsen, N.; Rauschmayer, F.; Henle, K. (Eds.). 1st Edition., 2013, 50 illus.

