

Fish mortality at hydropower plants

Johannes Radinger & Christian Wolter Presented by Sibylle Schroer

25.11.2022

One in five fish (22.3 percent) suffers fatal injuries when passing through a hydropower turbines

Evident but context-dependent mortality of fish passing hydroelectric turbines

Johannes Radinger¹ 0 | Ruben van Treeck^{1,2} 0 | Christian Wolter¹ 0

Abstract

Method

Review of grey literature analysing fish mortality at turbines 1058 turbani-related mortality assessments, 249 experiments, 91 studies, 120 locations, 15 countries ¹ Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
² Institute of Inland Fisheries e.V. Potsdam-Sacrow, Potsdam, Germany

Correspondence Johannes Radinger, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany. Email: jradinger@jgb-berlin.de Globally, policies aiming for conservation of species, free-flowing rivers, and promotion of hydroelectricity as renewable energy and as a means to decarbonize energy systems generate trade-offs between protecting freshwater fauna and development of hydropower. Hydroelectric turbines put fish at risk of severe injury during passage. Therefore, comprehensive, reliable analyses of turbine-induced fish mortality are pivotal to support an informed debate on the sustainability of hydropower (i.e., how much a society is willing to pay in terms of costs incurred on rivers and their biota). We compiled and examined a comprehensive, global data set of turbine fish-mortality assessments involving >275,000 indi-

Observed fish mortality rates at hydroelectric turbines across orders

Radinger et al. (2022) 🥏 IGB

Relations among taxonomic order, hydropower scale, turbine type, and mortality in assessments of fish mortality in hydroelectric turbines

Radinger et al. (2022)

Hydropower plants (HPP) - Risk assessment for fish

Assessment of the constellation-specific risk

Space-related parameters

- Occurrence / distribution of species
- Water body size
- Ecological status
- Significance for nature conservation

Project associated parameters

- Engine type
- Technical parameters (turbine type, orbital velocity)
- Distance of the HPP in relation to the dispersal distance
- Number of HPPs in the catchment area

Measures for damage prevention / protective action

- Fine screen
- Bypass
- Fish-friendly plant operation

Christian Wolter, Dirk Bernotat, Jörn Gessner, Anika Brüning, Jan Lackemann und Johannes Radinger

> Fachplanerische Bewertung der Mortalität von Fischen an Wasserkraftanlagen

Wolter et al. (2020)

Assessment population biology sensitivity index

Assessment index	Criteria	Parameter /indicator
Population Biology Sensitivity-Index	Mortality	Mortality rate old animals
		Maximum age
	Reproduction	Age of fertility
		Reproduction potential
		Reproduction rate
	Population size	National stock size
	Population development	National stock trend

Wolter et al. (2020) Solution IGB

Stock assessment

Sources: FFH reporting data > Expert assessments/literature > Red List classifications.

Class	Stock in Germany (individuals)	Assessment
1	<100	very small stock
2	100-1,000	
3	1,000-10,000	
4	10,000-100,000	
5	100,000-1M	
6	1 – 10 M	
7	10 - 100 M	
8	100 – 1 Bn	
9	> 1 Bn	Very large stock

Technical parameters of turbines correlating with fish mortality

- Falling height (positive)
- Turbine speed or rotational speed at the outer or middle impeller diameter (positive)
- Number of impeller blades (positive)
- Distance between impeller blades (negative)
- Gap between impeller and impeller casing/grain Kaplan, Archimedes' screw (positive) <2mm Water wheel (negative)
- Operating mode of the turbine/s e.g. half load or full load (positive)
- Frequency of hydropower plants in the watercourse section (kumulative)

Relationship between fish length and mean mortality rate across the six main turbine types

European Fish Hazard Index

Contents lists available at ScienceDirect Sustainable Energy Technologies and Assessments

journal homepage: www.elsevier.com/locate/seta

Original article

The European Fish Hazard Index – An assessment tool for screening hazard of hydropower plants for fish

Ruben van Treeck^{a,*,1}, Johannes Radinger^a, Richard A.A. Noble^b, Franz Geiger^c,

^b Leibnis-Institute of Preshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
^b Hull International Fisheries Institute (HIFI), Department of Biological and Marine Sciences University of Hull, Hull HU6 7RX, United Kingdom ^c Technical University of Munich, Versuchsanstalt für Wasserbau und Wasserwirtschaft, Obernach 15, 82432 Walchensee, Germany

Share of hydropower on renewable energy sources in the EU 2020

In Europe, 21,000 hydropower plants are in operation, and 8,500 more are planned

Share of hydropower on renewable energy sources in Germany hydropower potential largely exhausted (P_{inst} >1 MW)

Amount of HPP in Germany: **7300** (BDW, Keuneke 2019) 7679 (BMU 2007) **8300** (UBA 2021)

86% produced by 436 HPPs with P_{inst} >1 MW

6900-7900 HPPs produce in total only 2.6 TWh (1%)

IGR

> ≈ 6900-7900 * 22.3% fish mortality /HPP

Federal Environmental Agency (UBA), AGEE Stat (2022)

Hydropower plants in Brandenburg

Conclusions

- Hydropower is a solid renewable source and contributes to the energy transition
- In Germany 436 plants produce 86% of the electricity from hydropower,
 - These are to be provided with state-of-the-art fish protection
 - The vast majority, >6900 installations contribute with 1% to renewable electricity production, but have equally high trade offs, missing the WFD targets.
- State-of-the-art fish protection is non-negotiable
 - bypass fine screen management (shutting down during the main fish migration period)
- Exemption test according to Art. 4 WFD mandatory for each HPP
- Create financial incentives for the replacement and dismantling of small hydropower plants.
- Permits should make 20% MQ (= non-turbineable) mandatory for fish and river ecology functionality

Thank you very much for your attention!

If you have any questions, please contact: Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)

Christian Wolter Research Group Leader Fish Biology, Fisheries and Aquaculture +49 30 64181-633

Christian.Wolter@igb-berlin.de www.igb-berlin.de/en

